首页 实用范文 列表页

2023年初中生美术教案(四篇)

2023-12-24 互联网 实用范文

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?这里我给大家分享一些最新的教案范文,方便大家学习。

初中生美术教案篇一

1.创造的神秘,有如夜间的黑暗,是伟大的。——泰戈尔(印度最伟大的诗人)

2.神从创造中找到他自己;我们从创造中丰富了自己,超越了自己。3.假如生活没有创造,那便如同一口没有水的枯井,了无生趣。但创造源自何

处呢?有人说:“创造源于机遇,源于执着的追求。”又有人说:“创造并不遥远,它源于我们的生活本身。”这些都对。而我更要说:“创造源于内心的情愫,源于

对周围的人、对整个世界发自内心的深爱。”

和“时间”相关的话题

1.我们和时间有如海鸥与波涛,遇见了,走近了。但随着海鸥飞去,波涛滚滚

地流开,我们和时间也擦肩而过了。

2.时光,收集人类的泪水,将它蓄满风的谷仓。弯腰的小树,将头夹在两臂

之间,颤抖的鸟儿,飞行的门,不盖被褥入睡的窗户,花瓣散落的玫瑰树——这

些,是傍晚书页中的几处标点,由风之笔,留在我家门前。风,用它的睫毛,抚平时光的皱纹。

和“生命”“生活”相关的话题

1.我们的生命是上天赋予的,我们唯有热爱生命,才能真正拥有生命。

2.生命原是要不断地受伤,不断地复原,不断地创造,不断地被创造的。世界

上没有永恒的东西,烦恼和痛苦也是如此,因为生活不会停顿。

3.生活的悲剧性不在于一个人输了,而在于他差一点赢了。

4.生活,是一本书,每一页都是一个新的故事。回首,是温习往日的甘苦,激

发明日的斗志,不是为了守定一份成功,得意洋洋唱老调;也不是囿于一份失败,忧心忡忡马不前。

和“真理”相关的话题

1.错误经不起失败,但是真理却不怕失败。

和“顺境”“逆境”相关的话题

顺境使我们的精力闲散无用,使我们感受不到自己的力量,但是障碍却唤醒这种力

量而加以运用。

和“谦虚”“虚心”“低调”相关的话题

1.白云谦逊地站在天之一隅。晨光给它戴上霞彩。(谦虚)

2.云把水倒在河的水杯里,它们自己却藏在远山之中。(低调)

和“诚信”相关的话题 1.正因为有了一诺千金的豪情,才奏出易水送别之歌。诚信——中国侠客永恒的旋律;正因为有了海誓山盟的执着,才唱出了化蝶共舞之歌。诚信——中国情人

缠绵的绝唱;正因为有了为民谋福的诺言,才弹出了清正廉洁之歌。诚信——中

国清官属守的定律。

和“忠诚”“气节”相关的话题

苏武忠贞爱国,拒绝折节叛国,甘愿与羊为伍。地窖冰冷,他咽白雪啮毡毛;北

海荒远,他“掘野鼠藏草实而食之”。他用赤胆忠心奏响了千古绝唱——贫贱不能

移,威武不能屈,富贵犹能忘。

适合“成功”相关的话题

1.许多有建树的人都不就是这样子的吗? 孔子在他的人生中静观世事之变,最终才功成名就,名垂千古;越王勾践卧薪尝胆,更是在他的生命中做出了休养生息,最终“苦心人,天不负,三千越甲可吞吴”不再是神话……

2.冰心说:成功的花儿,人们只惊羡它现实的明艳,然而当初的芽儿却浸透了生命的血雨,洒满了奋斗的泪泉。

和“选择”相关的话题 1.选择是一个崭新的开端,选择高耸入云的峭崖便需有“路漫漫其修远兮,吾将上下而求索”的信念;选择波涌浪滚的大海便需有“直挂云帆济沧海”的壮志豪情;选择寒风劲厉的荒漠便需有“醉卧沙场君莫笑,古来征战几人回”的博大胸怀-----和“幸福”“美好”相关的话题 20世纪曾孕育着前人无数的祈盼,20世纪也闪耀着无尽的辉煌----当爱因斯坦创立相对论的时候,当比尔·盖茨创办微软的时候,当阿姆斯特朗登上月球的时候,当“多利羊“出世的时候----我们可以更快地奔跑了;当世界反法西斯战争胜利的时候,当新中国诞生的时候----我们可以更自由地呼吸了;当泰戈尔寻找天空中翅膀的时候,当毕加索描绘少女与鸽子的时候,当迈克尔·杰克逊尽情摇滚的时候,当乔丹高高跃起大灌篮的时候----我们可以更美地生活了。

和“珍惜”相关的话题

我们总站在富足的地方悯惜贫穷,总躺在安全的地方怒斥邪恶,总在五十步笑百步后呼唤远离冷漠,总在血痕淡去后才忙着计算生命的价值。

和“善于发现”“善于感悟”“懂得欣赏”相关的话题

静物是凝固的美,动景是流动的美;直线是流畅的美,曲线是婉转的美;喧闹的城市是繁华的美,宁静的村庄是淡雅的美。生活中处处都有美,只要你有一双发现美的眼睛,有一颗感悟美的心灵。

和“亲情”相关的话题

亲情是什么?亲情是朔风呼啸的冬夜,母亲手中飞翻的针线;是烈日炎炎的夏日,父亲手中驱蚊的芭蕉扇;是久别重逢后,亲人的一句平淡的问话“回来了”。和“民族、文化”相关的话题

1.春秋战国,诸子百家,深邃如江海,滋育华夏,有孔子老庄,恰似“江河万古流”;唐朝宋代,骚人墨客,浩繁如星辰,照耀神州,有李杜苏辛,正如“光焰万丈长”;元明清时,戏曲小说,高妙如山川,丰富民族,有汉卿雪芹,已是“托体同山阿”。2.罗曼·罗兰说过:“一个民族的政治生活,只是它生命的浮面;为了探索它的内在生命--它的各种行动的源泉--我们必须通过它的文学、哲学和艺术而深入它的灵魂,因为这里反映了人民的种种思想、热情和理想。”所以一个人,无论他是中国人还是外国人,如果他从来没有读过《老子》《孟子》《论语》《诗经》和唐诗和宋词、汉文章,如果他对于“天下为公”的理念、“宁为玉碎,不为瓦全”的品格、“富贵不能淫,贫贱不能移,威武不能屈”的操守、“先天下之忧而忧,后天

下之乐而乐”的胸怀、“位卑未敢忘忧国”的精神、“无为而无不为”的智慧、“己所不欲,勿施于人”的道德原则……这一切都一无所知,那么,他决没有资格说他懂什么是“中华民族”!

3.选择文学,我也就选择了与文学家一同散步,在那里,我会让朱自清先生带我去寻找那七十年前清华圆的旧迹,让余秋雨领我去探寻那敦煌的奥秘,让三毛带我一路穿过西班牙和德意志,迎着撒哈拉的热风去聆听骆驼那悲惨的哭泣,让张爱玲点燃一烛沉香,在香烟缭绕中把我带到旗袍摆动、人力车穿行的旧上海------使我在故园中得到启发,灵魂为之升华。

4.中国人的性格像茶,总是清醒、理智地看待世界,不卑不亢,执着持久,善良、质朴,在友好和谐的气氛中共同追求理想。茶,流传着中华民族自强不息,热爱和平,互帮互助的美好精神。每一个喜欢茶的人,都会感到生命的底蕴在杯底沉淀,然后在头脑中升华。

初中生美术教案篇二

初高中化学衔接教案

第一课时:基本概念的学习方法

[目的要求]

1、使学生明确概念的基本组成(包括内涵和外延)。

2、掌握理解概念内涵的基本方法

3、掌握形成概念图的方法

4、通过对具体概念的分析,培养学生分析问题的能力。[教学重点]

1、掌握理解概念内涵的基本方法

2、掌握形成概念图的方法 [教学难点]

概念外延的延伸(形成概念图)

[任务分析]

初中概念学习较为分散,并往往以记忆为主。一方面,到了高中,概念增加,通过已知概念,同化方法教育显得更重要,另一方面,一段时间不接触,化学概念较为生疏,很有必要整理。

[教学过程]

[讲解]概念是物质本质特征的高度概括,概念有其内涵和外延。内涵即我们通常所说的定义。要真正的理解一个概念,还必须了解概念的外延(即概念之间的相互联系)。[板书]

(一)概念的学习方法

[提问]如何去理解概念的定义呢?

[讲解]以化合物这个概念为例。

方法:

(1)可列举一部分化合物,让学生去找这些物质的共同特征,然后抽象出化合物的定义。

(2)再请学生根据定义,列举出一些具体的化合物。

[讲解]要真正理解“化合物”的概念,还必须知道“化合物”这一概念与其他概念之间的相互关系。

[提问]

1、与“化合物”概念有关的有哪些概念?

2、它们和“化合物”概念之间存在怎样的关系?请画出它们之间的关系图。图:

[讲解]由化合物这个概念我们引出了物质分类的结构图。对概念的学习,我们必须掌握好概念的学习方法。在初中,我们只知道去记住个定义,在从具体的事例中来理解这个定义。而在高中我们首先要掌握的是概念的学习方法,用这种方法可以去分析各种各样的概念。

[板书]

(二)物质分类的有关概念

[讲解]在对化合物这个概念的讨论中,我们得出了物质分类的结构图。下面具体地来分析有关物质分类的概念。

[练习]判断下列物质是混合物还是纯净物? 空气 海水 液态氧 铁 [提问]

1、怎样划分混合物和纯净物?

2、根据什么把纯净物分成单质和化合物?

3、根据性质的不同,单质可分为哪几类?

4、根据什么把化合物分成酸、碱、盐和氧化物?

5、根据化学性质的不同,氧化物可分成哪几类?

[练习]请大家把物质分类的结构图在脑海里想一遍,并画在纸上,注明分类的依据。图:

[练习]

1、下列物质:①含cao99%的生石灰 ②cao刚好与水反应的生成物 ③水银 ④浓盐酸 ⑤含铁70%的三氧化二铁,用编号填入下列空格:,属单质的是______,属化合物的是_________。属混合物的是__________

2、从h、c、o、na四种元素种,选择适当的元素,按要求写出各物质的化学式。

①金属单质________、非金属单质_________ ②酸性氧化物 _________、碱性氧化物____________③酸_________、碱 _________、盐__________。

[教学后记]

1、由于学生基础,不是很好,任务无法完成;

2、两性氧化物不要出现;

3、概念定义较为生疏。第二课时:物质的结构 [目的要求]

1、复习原子的构成,熟练地画原子结构示意图。

2、掌握核外电子的排布规律。

3、从结构的角度来分析离子化合物和共价化合物。

4、使学生认识到元素的化学性质与原子的最外层电子数密切相关。[教学重点]

1、掌握核外电子的排布规律。

2、从结构的角度来分析离子化合物和共价化合物。

3、使学生认识到元素的化学性质与原子的最外层电子数密切相关。[教学难点]

1、从结构的角度来分析离子化合物和共价化合物。

2、使学生认识到元素的化学性质与原子的最外层电子数密切相关。[任务分析] 初中已学过1-18号元素的排布,但离子化合物与共价化合物没有涉及,而这部分知识又对高中化学学习显得十分重要。这里提出,起着承上启下的作用。

[教学过程] [提问]原子有哪几部分构成? [板书]

1、原子的结构

[提问]中子数、核内质子数、核外电子数以及核电核数,它们之间存在怎样的关系?为什么有这样的关系?

关系:核内质子数=核外电子数=核电核数

[练习]以氧原子为例说明构成氧原子的微粒有哪几种?它们是怎样构成的?为什么整个原子不显电性?

答:①原子是由质子、中子和电子构成的。②在氧原子中,8个质子和8个中子构成了原子核,8个电子在原子核外的一定范围内的空间作高速运动。③由于氧原子核内有8个质子,带8个单位的正电核,而核外的8个电子却带有8个单位的负电核,两者带有的电荷相反,电量相等,所以整个原子不带电性。

[板书]

2、核外电子的排布

[练习]写出下列元素的原子结构示意图。n o na al s ca [提问]核外电子排布遵循怎样的规律?

① 能量最低原则:核外电子总是尽先排布在能量最低的电子层里,然后再由里往外,依次排布在能量逐步升高的电子层里。

② 排布规律:a.各电子层最多容纳的电子数为2n2。b.最外层电子数目不超过8个(k层为最外层上不超过2个)。c.次外层电子数目不超过18个,倒数第三层电子数目不超过32个。

[练习]分别写出he、ne、ar、k、mg、al、f、s、p的原子结构示意图。

[讲解] he、ne、ar最外层电子数都是8个(he是2个),达到饱和,它们的化学性质非常稳定,一般不和其它的物质发生化学反应。因此,若最外层达到饱和,这样的结构是最稳定的。

[提问]试分析k、mg、al、f、s、p等元素的原子怎样才能达到稳定结构?

[结论]在化学反应中,金属元素的原子较容易失去最外层电子,达到8个电子的稳定结构:非金属元素的原子比较容易获得电子,使最外层通常达到8个电子的稳定结构。因此,元素的化学性质和它的最外层电子数目关系密切。

[练习]写出下列离子的离子结构示意图:

[讲解]所有的元素的原子都力求达到8电子(k层为2电子)的稳定结构,而各元素的原子得失电子能力又各不相同,形成化合物的结构各不相同,我们可以把这些化合物分成两类:离子化合物和共价化合物。

[讲解]由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫电子式。

[板书]

3、离子化合物和共价化合物

[练习]请表示下列粒子的电子式:k、mg、al、f、s、p

[练习]判断下列物质哪些是离子化合物?哪些是共价化合物?并写出它们的电子式。nacl、mgcl2、hcl、co2 [教学后记]

1、示意图部分知识,学生掌握较好;

2、电子式书写本节课还是没有掌握,下节课还得进一步巩固。第三课时:物质的变化及其类型 [目的要求]

1、巩固物理变化和化学变化知识。

2、复习化学变化的类型。

3、学习氧化还原的本质定义及其与四种基本反应类型的关系。

4、培养学生的分析能力和归纳的能力。[教学重点]

1、巩固物理变化和化学变化知识。

2、复习化学变化的类型。

3、学习氧化还原的本质定义及其与四种基本反应类型的关系。[教学难点] 学习氧化还原的本质定义及其与四种基本反应类型的关系。[任务分析] 初中讨论了四种基本反应类型和氧化还原反应,本节课主要是加强联系,结合实际。[教学过程] [复习并练习有关电子式的书写] [板书]

(三)物质的变化及其类型

1、物质的变化

[提问]物质的变化类型有哪些?

[练习]判断下列变化是物理变化还是化学变化? 石蜡熔化 干冰汽化 煤的燃烧 铁器生锈 [提问]判断物理变化和化学变化的依据是什么? [板书]

2、物质的反应类型

[练习]写出化学反应方程式并注明基本反应类型 ① 铁丝在点燃的条件下在氧气中剧烈燃烧

② 碳具有可燃性,在氧气不足的条件下,燃烧不充分 ③ 氢气能使氧化铜发生还原反应,生成铜 ④ 二氧化碳能使澄清的石灰水变浑浊 ⑤ 硫酸氢铵受热易分解

[提问]根据什么把化学反应分成化合反应、分解反应、置换反应、复分解反应?

[投影]

四种反应基本类型

表 达 式

化 合 反 应 a+b=ab

分 解 反 应 ab=a+b

置 换 反 应 a+bc=ac+b

复 分 解 反 应 ab+cd=ad+bc

[讨论]用四种基本反应类型来分析

属于哪种基本反应类型?从中可得出什么结论?

[思考]四种基本反应类型是否包括所有的化学反应?

[提问]从得氧失氧的角度来分析,这是一个氧化还原反应。用初中所学的氧化还原反应的知识来分析中何者被氧化、何者被还原,并指出氧化剂、还原剂、氧化产物、还原产物。

[练习]

1、用“双线桥”表示上述反应。

2、用“双线桥”表示“氢气还原氧化铜”这一反应

[提问]请大家标出以上两反应中各元素的化合价,请问化合价变化与氧化剂、还原剂、氧化产物、还原产物等概念有何关系?

[练习]试从得失氧和化合价的升降来分析下列反应是否是氧化还原反应?

[提问]从中我们可以得出什么结论?

[结论]从化合价的角度能得出上述反应是氧化还原反应,从得失氧的角度无法判断。因此从化合价的角度来分析氧化还原反应比得失氧的角度来分析氧化还原反应的应用范围更广。不仅可以分析有氧得失的氧化还原反应,还可以分析无氧得失的氧化还原反应。

[提问]上述反应中为什么元素的化合价会发生改变?

[讲解]从原子结构来分析。请大家写出氯和钠的原子结构示意图。

电子带负电荷,因此钠原子失去电子带负电荷,元素化合价为正价;氯元素得到电子带负电荷,元素化合价为负价。所以元素化合价的升降是由于它们的原子在反应中得到或失去电子的缘故。

对于这类反应,氯化氢是共价化合物,电子式为(叫学生来写),虽然没有电子的得失,但由于共用电子对发生了偏离,从而使氢显+1价,氯显-1,这类反应也属于氧化还原反应。

[练习]请大家举出类似的电子发生偏离的氧化还原反应。

[讲解]从上面的讨论我们知道化合价的升降是由于电子的得失,由此我们可以得出氧化还原反应的本质定义:有电子转移(包括得失和偏移)的反应是氧化还原反应。其中物质失去电子的反应是氧化反应,得到电子的是还原反应。

[练习]判断下列反应是否使氧化还原反应,从化合价的升降和电子的得失来分析下列氧化还原反应,并用“双线桥”表示。

[提问]从上面的练习中,我们可以得出氧化还原反应和四种基本反应类型存在怎样的关系?

[投影]四种基本反应类型与氧化还原反应的关系:

[教学后记]

1、从电子得失来认识氧化还原反应,学生感觉比初中易理解;

2、但得失升降,常易混淆,还待于进一步训练。第五课时:物质的性质 [目的要求] 1、学会区分物理性质和化学性质。

2、回顾初中所学的氧气、水、氢气、碳、一氧化碳等物质的性质。3、注意让学生自己找出物质的特性以及它们之间存在的特性。[教学重点] 1、区分物理性质和化学性质。

2、回顾氧气、水、氢气、碳、一氧化碳等物质的性质。3、找出物质的特性以及它们之间存在的特性。[教学难点] 注意让学生自己找出物质的特性以及它们之间存在的特性。[任务分析] 以上物质的性质,学生比较熟悉,本节课无非是让他们掌握归纳、类比的方法。[教学过程] [板书]

(四)物质的性质

[提问]我们可把物质的性质分成几类? [板书]1、物理性质和化学性质

[练习]判断下列性质式物理性质还是化学性质?

①汽油具有挥发性

②碳具有还原性 ③碳酸氢铵不稳定,受热易分解 ④氧气具有氧化性 ⑤一氧化碳具有可燃性

⑥氢氧化钠具有碱性

[提问]我们式怎样区分物理性质和化学性质的?

[提问]我们是从哪些方面来描述物质的物理性质?从哪些方面来描述物质的化学性质? [练习]阅读下列这段文字,请说明哪些是物理性质?哪些是化学性质? 金属钠很软,可以用刀切割。切开外皮后,可以看到钠具有银白色的金属光泽。钠是热和电的良导体。钠的密度是0.97g/cm3,比水的密度小,能浮在水面上。钠的熔点是97.81℃,沸点是882.9℃。

[提问]初中所学的物质有哪些?

[提问]具体地这些物质的物理性质和化学性质,填写下表

物 理 性 质

化学性质(写出化学反应方程式)

o2

co2

h2

co

caco3

注:1、从氧化还原的角度分析化学方程式,得出物质的性质。2、即要找出物质的特性,又要找出物质的共性。表:

物 理 性 质

化学性质(写出化学反应方程式)

o2

通常状况下,氧气是一种无色无味的气体,密度比空气略大。

助燃性

强氧化性

co2

无色无味的气体,比空气重,通常情况下1体积的水能溶解1体积的二氧化碳。

不能燃烧,也不能支持燃烧,可用澄清的石灰水来检验。

h2

通常情况下,氢气是一种无色无味的气体,密度很小,约是空气的1/14。

h2、c、co具有相似的化学性质:可燃性和还原性。

具有多种同素异形体:金刚石、石墨、无定形碳

co

无色无味气体,难溶于水,密度比空气略小。

caco3

不溶于水的白色固体。

了解石钟乳的形成过程。

第六-七课时:实验基本操作

[目的要求]

1、让学生认识实验室的常用仪器,并知道其作用。

2、掌握化学实验的基本操作。

3、回顾初中所学的气体的制备实验。

4、培养学生的实验能力,为高中阶段的学习作准备。

初中生美术教案篇三

第一讲

数与式 1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即

绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.

两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.

1.填空:(1)若,则x=_________;若,则

ba

(2)如果,且,则b=________;若,则c=________..选择题: 下列叙述正确的是

()

(a)若,则(b)若,则 则

(d)若,则

(c)若,-3.化简:|x-5|-|2x13|(x>5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式:

(1)平方差公式 ; 方公式 .乘法公式

:;

(2)完全平

我们还可以通过证明得到下列一些

(1)立方和公式)三数和平方公式(4)两数和立方公式 ;)两数差立方公

(2)立方差公式

;(3(式

5对上面列出的五个公式,有兴趣的同学可以自己去证明. 22例1 计算:. 例2 已知,求的值.

习1.填空: 111122(1);()(2)

;(3).

完全平方式,则等于()

942322)2222

.选择题: 12(1)若是一个

21112222(c)

(d)(a)

(b)mmmm

416322(2)不论,为何实数,的值()ba

(a)总是正数(b)总是负数

(c)可以是零

(d)可以是正数也可以是负数 1.1.3.二次根式

一般地,形如的代数式叫做二次根式.根号下含有字母、且不能够开,等是有理式.

2得尽方的式子称为无理式.例如,等是无理式,而 2 2

21.分母(子)有理化 把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不

含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,a3a22 式. 与,与,与,等等.

一般地,与,与互为有理化因

分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程 在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算

中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.

22.二次根式的意义 a 2

例1 将下列式子化为最简二次根式:

62(1);

(2);

(3). 算:.

例2 计例3 试比较下列各组数的大小: 2(1)和;(2)和.例化简:.

2例 5 化简:(1);(2). 求的值 . =__

___;

例 6 已知,(1)

练习1.填空:

2(2)若,则的取值范围是_

_

___;

x

(3)__

___;

(4)若,则______

.选择题: xx等式成立的条件(a)(b)(c)(d).若,求的值.

__.

是()

4.比较大小:2-3

5-4(填“>”,或“<”).

1.1.4.分式 1.分式的意义 aaa形如的式子,若b中含有字母,且,则称为分式.当m≠0时,分式

bbb

具有下列性质: 3 ;

上述性质被称为分式

像,这样,分子或分母中又含有

例1 若,求常数的例2(1)试证:的基本性质. 2.繁分式 a 分式的分式叫做繁分式.

值.

解得 .

(其中n是正整数);

11(2)计算:;

1111(3)证明:对任意大于1的正整数

an,有.

2a=0,求e的值.();()

c22例3 设,且e>1,2c-5ac+

习1.填空题: 111对任意的正整数n,nn2.选择题: 若,则=

546(a)1(b)(c)(d)

.正数满足,求的值.

455算.

(1)

11114.计

习题1.1 1.解不等式: 4

(2);

2.已知,求的值.

(3). .填空:

1819(1)=________; ________; a

22(2)若,则的取值范围是

(3)________.

.2

分解因式 因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法. 1.十字相乘法 例1 分解因式: 22(1)x-3x+2;(2)x+4x-12;(3);(4).

解:(1)如图1.2-1,将二次项x分解成图中的两个x的积,再将常数项2分2解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x-3x+2中的一次项,所以,有 2x-3x+2=(x-1)(x-2). 1 -2 x x 1 -ay -1 -1 x 1 -2 x 1 6 -by -2 图1.2-1 图1.2-3 图1.2-4 图1.2-2 说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x用1来表示(如图1.2-2所示).(2)由图1.2-3,得 2x+4x-12=(x-2)(x+6).(3)由图1.2-4,得

x -1 22

y

1(4)=xy+(x-y)-1 图1.2-5 =(x-1)(y+1)(如图1.2-5所示). 5

2.提取公因式法与分组分解法 例2 分解因式:(1);

(2).(2)= ==.

2)(或

=

=

23.关于

=.

x的二次三项式ax+bx+c(a≠0)的因式分解. 若关于x的方程的两个实数根是、,则二次三项式

2就式分

可:

解(1为.例3 把下列关于x的二次多项);

(2).

个因式为()

练习1.选择题: 22多项式的一

(a)(b)(c)(d)

.分解因式: 233(1)x+6x+8;(2)8a-b; 2(3)x-2x-1;(4).

习题1.2 1.分解因式: 342(1);

(2);

13(4). 式分解:

2(4). 222

3(1);(2);

(3);

.在实数范围内因

(3);

.三边b,满足,试判定的形状. 4.分解因式:x+x-(a-a). 第二讲 函数与方程 2.1 一元二次方程 2.1.1根的判别式

2我们知道,对于一元二次方程ax+bx+c=0(a≠0),用配方法可以将其变形为

22a4a2

因为a≠0,所以,4a>0.于是 2(1)当b-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根

=; 12,2a2(2)当b-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根 b x=x=-; 12 2ab22(3)当b-4ac<0时,方程①的右端是一个负数,而方程①的左边一

2a

定大于或等于零,因此,原方程没有实数根. 22由此可知,一元二次方程ax+bx+c=0(a≠0)的根的情况可以由b-4ac来判22定,我们把b-4ac叫做一元二次方程ax+bx+c=0(a≠0)的根的判别式,通常用符号“δ”来表示. 2综上所述,对于一元二次方程ax+bx+c=0(a≠0),有(1)当δ>0时,方程有两个不相等的实数根

ac x=; 12,2a(2)当δ=0时,方程有两个相等的实数根 b x=x=-; 12 2a(3)当δ<0时,方程没有实数根. 例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根. 7

22(1)x-3x+3=0;(2)x-ax-1=0; 22(3)x-ax+(a-1)=0;(4)x-2x+a=0. 说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题. 2.1.2 根与系数的关系(韦达定理)2 若一元二次方程ax+bx+c=0(a≠0)有两个实数根 则有

122a2a2aa 212222a2a4a4aa,;

122a2a

所以,一元二次方程的根与系数之间存

一在下列关系: bc2 如果ax+bx+c=0(a≠0)的两根分别是x,x,那么x+x=,xx=.这

aa关系也被称为韦达定理. 2

特别地,对于二次项系数为1的一元二次方程x+px+q=0,若x,x是其两根,12由韦达定理可知

x+x=-p,xx=q,·1212 即 p=-(x+x),q=xx,·121222 所以,方程x+px+q=0可化为 x-(x+x)x+xx=0,由于x,x是一元二·12121222次方程x+px+q=0的两根,所以,x,x也是一元二次方程x-(x+x)x+xx=0.因·121212此有

以两个数x,x为根的一元二次方程(二次项系数为1)是 根及k的值.

122x-(x+x)x+xx=0. ·12122例2 已知方程的一个根是2,求它的另一个

-例3 已知关于x的方程x+2(m2)x+m=0有两个实数根,并且这两个+4实数根的平方和比两个根的积大21,求m的值. 例4 已知两个数的和为4,积为-12,求这两个数. 2 例5 若x和x分别是一元二次方程2x+5x-3=0的两根. 12(1)求| x-x|的值; 12 8

11(2)求的值;

22xx1233

(3)x+x. 12 2例6 若关于x的一元二次方程x-x+a-4=0的一根大于零、另一根小于零,求实数a的取值范围. 练习1.选择题: 22(1)方程的根的情况是()

(a)有一个实数根(b)有两个不相等的实数根(c)有两个相等的实数根(d)没有实数根 2(2)若关于x的方程mx+(2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是()11(a)m<(b)m>- 4411(c)m<,且m≠0(d)m>-,且m≠0 442.填空: 112(1)若方程x-3x-1=0的两根分别是x和x,则= .

xx 122(2)方程

mx+x-2m=0(m≠0)的根的情况是

(3)以-3和1为根的一元二次方程是 .

223.已知,当k取何值时,方程kx+ax+b=0有两个不相等的实数根?

.已知方程x-3x-1=0的两根为x和x,求(x-3)(x-3)的值. 1212 习题2.1 1.选择题: 2(1)已知关于x的方程x+kx-2=0的一个根是1,则它的另一个根是()(a)-3(b)3(c)-2(d)2(2)下列四个说法: 2 ①方程x+2x-7=0的两根之和为-2,两根之积为-7; 2②方程x-2x+7=0的两根之和为-2,两根之积为7; 72③方程3 x-7=0的两根之和为0,两根之积为;

32④方程x+2x=0的两根之和为-2,两根之积为0. 其中正确说法的个数是()(a)1个(b)2个(c)3个(d)4个 9

22(3)关于x的一元二次方程ax-5x+a+a=0的一个根是0,则a的值是()(a)0(b)1(c)-1(d)0,或-1 2.填空: 2(1)方程kx+4x-1=0的两根之和为-2,则k= .

222(2)方程2x-x-4=0的两根为α,β,则α+β= .

2(3)已知关于x的方程x-ax-3a=0的一个根是-2,则它的另一个根是 .

2(4)方程2x+2x-1=0的两根为x和x,则| x-x|= . 1212 223.试判定当m取何值时,关于x的一元二次方程mx-(2m+1)x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?

24.求一个一元二次方程,使它的两根分别是方程x-7x-1=0各根的相反数. 2.2 二次函数 2 2.2.1 二次函数y=ax+bx+c的图像和性质 22二次函数y=ax(a≠0)的图象可以由y=x的图象各点的纵坐标变为原来的a倍得2到.在二次函数y=ax(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小. 2二次函数y=a(x+h)+k(a≠0)中,a决定了二次函数图象的开口大小及方向;h决定了二次函数图象的左右平移,而且“h正左移,h负右移”;k决定了二次函数图象的上下平移,而且“k正上移,k负下移”. 2由上面的结论,我们可以得到研究二次函数y=ax+bx+c(a≠0)的图象的方法: 22bbbb222由于y=ax+bx+c=a(x+)+c=a(x++)+c- xx

2a4a2

2,所以,y=ax+bx+c(a≠0)的图象可以看作是将函数y=ax的图象作左右平移、2上下平移得到的,于是,二次函数y=ax+bx+c(a≠0)具有下列性质:

(1)当a>0时,函数y=ax+

2a4abbbbx+c图象开口向上;顶点坐标为,对称轴为直线x=-;当x<时,y随着x的增大而减小;当x>时,y随着x的增大=.

而增大;当x=时,函数取最小值y

(2)当a<0时,函数y=ax+bx+c

2a4abbb图象开口向下;顶点坐标为,对称轴为直线x=-;

当x<时,y随着x的增大而增大;当x>时,y随着x的2a2a2a 10

2增大而减小;当x=时,函数取最大值y=. 2a4a 2-例1 求二次函数y=3x-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象. 2例2 把二次函数y=x+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数2y=x的图像,求b,c的值. 2例3 已知函数y=x,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值. 练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()22(a)y=2x(b)y=2x-4x+2 22(c)y=2x-1(d)y=2x-4x 22(2)函数y=2(x-1)+2是将函数y=2x()(a)向左平移1个单位、再向上平移2个单位得到的(b)向右平移2个单位、再向上平移1个单位得到的(c)向下平移2个单位、再向右平移1个单位得到的(d)向上平移2个单位、再向右平移1个单位得到的 2.填空题 2(1)二次函数y=2x-mx+n图象的顶点坐标为(1,-2),则m=,n= .

2(2)已知二次函数y=x+(m-2)x-2m,当m= 时,函数图象的顶点在y轴上;当m= 时,函数图象的顶点在x轴上;当m= 时,函数图象经过原点.

2(3)函数y=-3(x+2)+5的图象的开口向,对称轴为,顶点坐标 为 ;当x= 时,函数取最 值y= ;当x 时,y随着x的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象. 22(1)y=x-2x-3;(2)y=1+6 x-x. 24.已知函数y=-x-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最 11

小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3. 2.2.2 二次函数的三种表示方式 通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式: 21.一般式:y=ax+bx+c(a≠0); 22.顶点式:y=a(x+h)+k(a≠0),其中顶点坐标是(-h,k). 3.交点式:y=a(x-x)(x-x)(a≠0),其中x,x是二次函数图象与x轴交点的1212横坐标. 例 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式. 例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式. 例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 练习1.选择题: 2(1)函数y=-x+x-1图象与x轴的交点个数是()(a)0个(b)1个(c)2个(d)无法确定 1(2)函数y=-(x+1)+2的顶点坐标是()(a)(1,2)(b)(1,-2)(c)(-1,2)(d)(-1,-2)2.填空:(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a(a≠0).

2(2)二次函数y=-x+23x+1的函数图象与x轴两交点之间的距离为 .

3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x=3时,函数有最小值5,且经过点(1,11);

(3)函数图象与x轴交于两点(1-2,0)和(1+2,0),并与y轴交于(0,-2). 习题2.2 1.选择题: 2-(1)把函数y=-(x1)+4的图象的顶点坐标是()(a)(-1,4)(b)(-1,-4)(c)(1,-4)(d)(1,4)12

2-(2)函数y=x+4x+6的最值情况是()

(a)有最大值6(b)有最小值6(c)有最大值10(d)有最大值2 2(3)函数y=2x+4x-5中,当-3≤x<2时,则y值的取值范围是

()

(a)-3≤y≤1

(b)-7≤y≤1

(c)-7≤y≤11(d)-7≤y<11

2.填空:(1)已知某二次函数的图象与x轴交于a(-2,0),b(1,0),且过点c(2,4),则该二次函数的表达式为 .(2)已知某二次函数的图象过点(-1,0),(0,3),(1,4),则该函数的表达式为 . 23.把已知二次函数y=2x+4x+7的图象向下平移3个单位,在向右平移4个单位,求所得图象对应的函数表达式. 4.已知某二次函数图象的顶点为a(2,-18),它与x轴两个交点之间的距离为6,求该二次函数的解析式. 2.3 方程与不等式

2.3.1 二元二次方程组解法

方程

是一个含有两个未知数,并且含有未知数的项的最高次数是做一次项,6叫做常方程

2的整式方程,这样的方程叫做二元二次方程.其中,叫做这个方程的二次项,叫

22xyx2xyy

数项. 我们看下面的两个

第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组

① ② 例2 解方程组 的解?

(3)(4)列方程组:(4)

练习

2.解下(1)

(2)1.下列各组中的值是不是方程组

(1)

(2)

(3)

2.3.2 一元二次不等式解法 2(1)当δ>0时,抛物线y=ax+bx+c(a>0)与x轴有两个公共点(x,0)和(x,0),方程122ax+bx+c=0有两个不相等的实数根x和x(x<x),由图2.3-2①可知 12122不等式ax+bx+c>0的解为

x<x,或x>x; 122 不等式ax+bx+c<0的解为 x<x<x. 1222(2)当δ=0时,抛物线y=ax+bx+c(a>0)与x轴有且仅有一个公共点,方程ax+bxb+c=0有两个相等的实数根x=x=-,由图2.3-2②可知

122a2不等式ax+bx+c>0的解为

b x≠- ; 2a2 不等式ax+bx+c<0无解. 22(3)如果△<0,抛物线y=ax+bx+c(a>0)与x轴没有公共点,方程ax+,bx+c=0没有实数根由图2.3-2③可知

2不等式ax+bx+c>0的解为一切实数; 2不等式ax+bx+c<0无解. 例3 解不等式: 22-(1)x+2x-3≤0;(2)xx+6<0; 14(3)4x+4x+1≥0;(4)x-6x+9≤0; 2(5)-4+x-x<0. 2 例4已知函数y=x-2ax+1(a为常数)在-2≤x≤1上的最小值为n,试将n用a表示出来.

习1.解下列不等式: 22(1)3x-x-4>0;(2)x-x-12≤0; 22≤0.(3)x+3x-4>0;(4)16-8x+x

22≤0(a为常数). 2.解关于x的不等式x+2x+1-a

习题2.3 1.解下列方程组: 2(2)

222.42

0;

222(2

3)0;

9,22

1,4,(1)

(3)

2.解下列不等式: 22

(1)3x-2x+1<0;

(2)3x-4<0; 22≥-1;(4)4-x≤0.(3)2x-x 第三讲 三角形与圆 3.1 相似形 3.1.1.平行线分线段成比例定理 三条平行线截两条直线,de如图3.1-2,有.当然,也可以得出.在运用该定理l//l//123bcefacdf解决问题的过程中,我们一定要注意线段之间的对应

关系,是“对应”线段成比例.例如图3.1-2,l//l//=2,bc=3,df=4,de,ef 15

例2 在中,为边上的点,求证:.abacbc

平行于三角形的一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.平行于三角形的一边,并且和其它两边相交的直线,dc例3

在中,为的平分线,求证:.vabcðbac=ad

例3的结论也称为角平分线性质定理,可叙述为角平分线分对边成比例(等于该

角的两边之比).练习1 1.如图3.1-6,下列比例式正确的l//l//l123是()adceadbca. b. == dfbcbeafceadafbec. d.==

dfbcdfce

图3.1-6

2.如图3.1-7,求的平分线,de//bc,ef//ab,ad=5cm,db=3cm,fc=2cm,.bf 图3.1-7 3.如图,在中,ad是角bacab=5cm,ac=4cm,bc=7cm,求bd的vabc长.图3.1-8

3.1.2.相似形 我们学过三角形相似的判定方法,想一想,有哪些方法可以判定两个三角形相似?有哪些方法可以判定两个直角三角形相似? 例6 如图3.1-12,在直角三角形abc中,为直角,.ðbacad^bc于d

求证:(1),;

22ab=bd bcac=cd cb(2)2ad=bd cd练习1.如图3.1-15,d是

vabcde//bc的边ab上的一点,过d点作已知ad:db=2:3,则等于

交ac于e.()

s:sveda四边形edcba. b. c. d. 2:34:94:54:21图3.1-15 2.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段.这两条线段的比是,则梯形的上、下底长分别是__________.3:23.已知:的三边长分别是

3,4,5,与其相似的的最大边长是15,vabcva'b'c'求的面积.'b'c'sva'b'c'

4.已知:如图

3.1-16,在四边形abcd 中,e、f、g、h分别是ab、bc、cd、da的中点.(1)请判断四边形efgh是什么四边形,试说明理由;(2)若四边形abcd是平行四边形,对角线ac、bd满足什么条件时,efgh是菱形?是正方形?

图3.1-16 习题3.1 17

中,1.如图3.1-18,ad=df=fb,ae=eg=gc,vabcfg=4,则()

a.de=1,bc=7 b.de=2,bc=6 c.de=3,bc=5 d.de=2,bc=8 图3.1-18 2.如图3.1-19,bd、ce是的中线,p、q分别是vabc bd、ce的中点,则等于()pq:bca.1:3 b.1:4 c.1:5 d.1:6 图3.1-19 3.如图3.1-20,中,e是ab延长线上一点,de交bc于点f,已知be:yabcd

ab=2:3,=4vcdfvbef

图3.1-20 4.如图3.1-21,在矩形abcd中,e是cd的中点,交ac于f,过f作fg//ab交ae于g,be^ac求证:.2ag=af fc 图3.1-21 3.2

三角形 3.2.1 三角形的“四心” 三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三 18

角形的内部,恰好是每条中线的三等分点.例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知 d、e、f分别为三边bc、ca、ab的中点,vabc图3.2-3 求证

ad、be、cf交于一点,且都被该点分成2:1.三角形的三条角平分线相交于一点,是三角形的内心.三角形的内心在三角形的内部,它到三角形的三边的距离相等.(如图3.2-5)

图3.2-5 例2 已知的三边长分别为,i为的内心,且ivabcvabcbc=a,ac=b,ab=cb+c-a在的边上的射影分别为,求证:.vabcbc、ac、abd、e、fae=af=

2三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.(如图3.2-8)图3.2-8 例4 求证:三角形的三条高交于一点.已知 中,^bc于d,be^ac于e,^ab 过不共线的三点

a、b、c有且只有一个圆,该圆是三角形abc的外接圆,圆心o为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.19

练习1 1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.2.(1)若三角形abc的面积为s,且三边长分别为,则三角形的内切圆分别为(其中为斜边长),则三角形的内

a、b、c的半径是___________;(2)若直角三角形的三边长

a、b、cc

切圆的半径是___________.并请说明理由.练习2 1.直角三角形的三边长为3,4,,= 2.等腰三角形有两个内角的和是100°,则它的顶角的大小是_________.3.已知直角三角形的周长为,斜边上的中线的长为1,求这个三角形的面积.3列结论中,132a.

3习题3.2 a组 1.已知:在中,ab=ac,为bc边上的高,则下

o

正确的是()

b.

c.

d. 6、8、10,那么它最短边2222.三角形三边长分别是上的高为()a.6 b.4.5 c.2.4 d.8 3.如果等腰三角形底边上的高等于腰长的一半,那么这个等腰三角形的顶角等于

_________.4.已知:是的三条边,那么的取值范围是_________。,且是整数,则的值是_________。

5.若三角形的三边长分别为aa81、a、3.3圆 3.3.1 直线与圆,圆与圆的位置关系

设有直线和圆心为且半径为的圆,怎样判断直线和圆的位置关系?ooll r 20

图3.3-1 观察图3.3-1,不难发现直线与圆的位置关系为:当圆心到直线的距离时,d>r直线和圆相离,如圆与直线;当圆心到直线的距离时,直线和圆相切,如od=rl1圆与直线;当圆心到直线的距离时,直线和圆相交,

ab222.r-d=()2 当直线与圆相切时,如图3.3-3,线,可

opa,pb

得,且

在中,.222oa

pb图3.3-3 如图3.3-4,为圆的切ooptpab

以证得,因而.线,为圆的割线,我们可

2图3.3-4 例1 如图3.3-5,已知⊙o的半径ob=5cm,弦 21

ab=6cm,d是的中点,求弦bd的长度。ab

例2 已知圆的两条平行弦的长度分别为6和,且这两条线的距离为3.求这个圆26的半径.设圆与圆半径分别为,它们可能有哪几种位置关系? oor,r(r两圆相内切,r)2图3.3-7

观察图3.3-7,两圆的圆心距为,不难发现:当时,如图(1);当时,两圆相外切,如图(2);当时,两圆相内含,如图(3);当时,两圆相交,如图(4);当时,两圆相外切,如图(5).例3 设圆与圆的半径分别为3和2,为两圆的交点,试求两圆oooo4a,b2112 练习1 1.如图3.3-9,⊙o的半径为17cm,弦ab=30cm,ab所对的劣弧和优弧的中点分别为d、c,求弦ac和bd的长。22 图3.3-9

2.已知四边形abcd是⊙o的内接梯形,ab//cd,ab=8cm,cd=6cm, ⊙o的半径等于5cm,求梯形abcd的面积。

3.如图3.3-10,⊙oo的直径ab和弦cd相交于点e,求cd的长。

图3.3-10 4.若两圆的半径分别为3和8,圆心距为13,试求两圆的公切线的长度.3.3.2 点的轨迹 在几何中,点的轨迹就是点按照某个条件运动形成的图形,它是符合某个条件的所有点组成的.例如,把长度为的线段的一个端点固定,另一个端点绕这个定点旋转r一周就得到一个圆,这个圆上的每一个点到定点的距离都等于;同时,我们把符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都满足条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.下面,我们讨论一些常见的平面内的点的轨迹.从上面对圆的讨论,可以得出:(1)到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆.我们学过,线段垂直平分线上的每一点,和线段两个端点的距离相等;反过来,和线段两个端点的距离相等的点,都在这条线段的垂直平分线上.所以有下面的轨迹:(2)和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.由角平分线性质定理和它的逆定理,同样可以得到另一个轨迹:(3)到已知角的两边距离相等的点的轨迹,是这个角的平分线.练习下列条件的点的轨迹: 23 1.画图说明满足(1)到定点的距离等于的点的轨迹; 3cma(2)到直线的距离等于的点的轨迹;

2cml(3)

已知直线,到、//cdcdab 2.画图说明,习题3.3 1. 已知弓形弦长为4,弓形高为1,则弓形所在圆的半径为()5 a. b. c.3 d.4 3 2 2. 在半径等于4的圆中,垂直平分半径的弦长为()

a. b. c. d. 3433323 3. ab为⊙o的直径,弦,e为垂足,若be=6,ae=4,则cd等于()ca. b. c. d. 462622182 4. 如图3.3-12,在⊙o中,e是弦ab延长线上的一点,已知oob=10cm,oe=12cm,求ab。3.3-12

参考答案 第一讲

数与式 1.1.1.绝对值

1.(1);

(2);或 2.d 3.3x-18 公式 11111.(1)

(2)

(3)

1.1.2.乘法

b

32242.(1)d(2)a 1.1.3.二次根式 24

1.(1)(2)(3)(4). 532100习题

2863

52.c 3.1

4.> 1.1.4.分式 199

1.2.b 3. 4. 2

1.1 1.(1)或(2)-4

211.2

<x<3

(3)x<-3,或x>3 3.(1)(2)(3)

2.1

分解因式 3)1. b

2.(1)(x+2)(x+4)

(2)

22(2)(42(1)2)(1

(2)(4).

2)(2)(2

习题1.2

1.(1)

(2)(3)23231111

2a3

4(45252723(1)(33)135521

2.(1);(2);

5)(1

(4).

(3);

5)3

3.等边三角形 4.(1)()第二讲 函数与方程 2.1 一元二次方程 练习1.(1)c(2)d

22.(1)-3

(2)有两个不相等的实数根(3)x+2x-3=0 3.k<4,且k≠0 4.-1 提示:(x-3)(x-3)=x x-3(x+x)+9 121212习题

2.1 1.(1)c(2)b 提示:②和④是错的,对于②,由于方程的根的判别式δ<20,所以方程没有实数根;对于④,其两根之和应为-.(3)c 提示:当a=0时,方程不是一元二次方程,不合题意. 25 2.(1)2(2)(3)6(3)3 4113.当

m>-,且m≠0时,方程有两个不相等的实数根;当m=-时,方程有两

441个相等的实数根;当m<-时,方程没有实数根.

44.设已知方程的两根分别是x和x,则所求的方程的两根分别是-x和-x,∵x+x=7,1212122

xx=-1,∴(-x)+(-x)=-7,(-x)×(-x)=xx=-1,∴所求的方程为y+7y-1=0.12121212 2.2 二次函数 22.2.1 二次函数y=ax+bx+c的图象和性质 练

习1.(1)d

(2)d

2.(1)4,0(2)2,-2,0(3)下,直线x=-2,(-2,5);-2,大,5;>-2. 3.(1)开口向上;对称轴为直线x=1;顶点坐标为(1,-4);当x=1时,函数有最小值y=-4;当x<1时,y随着x的增大而减小;当x>1时,y随着x的增大而增大.其图象如图所示.(2)开口向下;对称轴为直线x=3;顶点坐标为(3,10);当x=3时,函数有最大值y=10;当x<3时,y随着x的增大而增大;当x>3时,y随着x的增大而减小.其图象如图所示.

y

(3,10)

y 2y=x-2x-3 x=1 -1 o 3 x 2y=-x+6x+1 1 o x -3(1,-4)x=3(2)(1)(第3题)

4.通过画出函数图象来解(图象略).(1)当x=-2时,函数有最大值y=3;无最小值.(2)当x=-1时,函数有最大值y=4;无最小值. 26

(3)当x=-1时,函数有最大值y=4;当x=1时,函数有最小值y=0.(4)当x=0时,函数有最大值y=3;当x=3时,函数有最小值y=-12. 2.2.2 二次函数的三种表示方式 练习1.(1)a(2)c -2.(1)(x+1)(x1)(2)4 3223.(1)y=-x+2x-3(2)y=(x-3)+5 2(3)y=2(x-1+2)(x+1-2)习题2.2 1.(1)d

(2)c(3)d 222.(1)y=x+x-2

(2)y=-x+2x+3 23.y=2x-12x+20 24.y=2x-8x-10 2.3 方程与不等式 2.3.1 二元二次方程组解法 练习1.(1)(2)是方程的组解;

(3)(4)不是方程组的解. 2.(1)

(2)

(3)

(4)

2.3.2 一元二次不等式解法

练习27

41.(1)x<-1,或x> ;(2)-3≤x≤4;

(3)x<-4,或x>1;(4)x=4. 2.不等式可以变为(x+1+a)(x+1-a)≤0,(1)当-1-a<-1+a,即a>0时,∴-1-a≤x≤-1+a; 2≤0,∴x=-1;(2)当-1-a=-1+a,即 a=0时,不等式即为(x+1)

(3)当-1-a>-1+a,即a<0时,∴-1+a≤x≤-1-a. 综上,当a>0时,原不等式的解为-1-a≤x≤-1+a; 当a=0时,原不等式的解为x=-1; 当a<0时,原不等式的解为-1+a≤x≤-1-a.

2,0,220,0,412

习题2.3 1024

53111.(1)

.,,(2)

.2253

332,2,332;3,2,12 3,3,3,(3)

(4)

34211,1,1.1,1243

33(3)1-23232.(1)无解(2)

2≤x≤1+2(4)x≤-2,或x≥2 第二讲 三角形与圆 3.1 相似形 练习1 1.d deadx510102.设.即 , ,,,.2833abbd5353.acdc49cfdc 28

4.作交于,则得,又

acdcegce交5.作于,即

ababegegef 11523. 练习2 1.

c2.12,18

.(1)因

为所以是平行四边形;(2)当时,为菱形;当时,

2o5.(1)当时,;(2).习题3.1 1.b 2.b

3..为直角三角形斜边上的高,

bf.证略 2.(1);(2).3.c 8020 解得,3.2 三角形 练习1

练习2 oo71.5或 2.或

.设两直角边长为,斜边长为2,则,且,1.5.可利用面积证

习题3.2 a组 .b 2.d 3.4.5.8 120 29

3.3 圆 练习1,,1.取comd17

ab中点m,连cm,md,则,且

共线,158,25,9,.534cm34cm,32,2.o到abcd的距离分别为3cm,4cm,梯形的高为1cm或7cm, 3.半径为3cm,oe=2cm.,of=.4.外公切线长为12,内公切线长为.433,26cm练习1.(1)以a为圆心,3cm为半径的3.3 圆;(2)与平行,且与距离为2cm的两条平行线;(3)与abll平行,且与ab,cd距离相等的一条直线.2.两条平行直线,图略.习题1.b 2.a 3.b =8cm.30

初中生美术教案篇四

初高中美术教案

教学方法:讲解、行赏、比较、练习相结合

1、教学目的

1、通过本课学习,2、使学生初步了解视觉形象的分类和造型要素的基本知识。

3、通过对美术作品中形的认识和分析,4、提高学生对艺术形的欣赏能力。

5、通过对本课的学习,6、使学生认识美术具有多种表现形式,7、从而

8、提高学生对艺术形式美的欣赏能力,9、以及美术学习的兴趣与信心。

2、教学重点、难点: 重点:掌握写实造型、变形造型和抽象造型的区别,并能运用所学知识识别美术作品的不同表现形式。

难点:掌握基本要素的特点,并能运用基本要素分析作品。

3、教具、学具准备

4、教具;自制造型要素挂图一张,不同表现形式的作品若干幅。学生:课本、作业 本、软心铅笔、尺。

5、教学步骤 第一课时

一、导入 新课:(约2分钟)大千世界的各种物象形体,首先是被我们的眼睛感受到的,对视觉形象进行观察和研究,会使我们获得丰富的审美信息和多种知识,提高我们的审美能力、表现能力和创造能力。

板书:视觉形象的分类(约23分钟)尽管视觉形象复杂多变、丰富纷呈,但总体上可分为两大类,即自然形和人工形。由自然力造成的,叫自然形(如山石、河岸、动植物等),人类出于某种目的造成的形,叫人工形(如产品、工具等)人工形中以表达思想观念和审美感受为目的的,叫艺术形(如绘画、雕塑、工艺美术等)。板书:自然形 人工形

艺术形:表达思想观念、富于审美价值。

提问:分别举出生活中的自然形、人工形和艺术形的物象。

形还可以从不同方面进行分类,如材料上分,有纸材料造型、木材料造型、金属材料造型、石质材料造型等。

(以问答形式讨论欣赏作品,再作总结)

《饮水的熊》作者在创作中,用造型的基本法则之一即对称手法,巧妙地表现了饮水的熊和它的倒影,且将石质材料打磨光洁,以表现小熊的可爱和水的清盈感。《怀抱》以金属材料制作的富有动感的造型表现了母子欢快的神情。《母子》则用概括的手法打磨光洁的木质,表现丰润的母子形象,摇篮式的造型,激起了人们对童年的美好回忆。

板书:造型要素:(约18分钟)

造型要素主要有点、线、面、体块与空间、光与色、质地等。在艺术造型中,如能很好地利用这些要素,将使作品更具魅力。因此,我们必须认识了解造型要素及其功能。

(结合造型要素范图讲解)

点:最小的视觉单位。包括各种不同形状的点,能成为注意中心确定结构以及组成体面(参看课本p4生活中的点和表现点的节秦的绘画)。图①中,我们看到运用点的组织,产生疏密有致的变化,富有节奏感。

线:可看作点运动的痕迹,有方向和运动感,可以表达情感,限定形状,表现质地和描绘阴影(讲解挂图)

面:由长度和宽度构成的平面形,面的形成有三种方式:线的包围、分割和表面色、质的变化。面可以分为几何形和自由形两大类(讲解挂图)。

体块与空间:体块即长度、深度三维空间的占有形式,或者说是由长度、宽度和深度构成的主体形。(参看p4生活中的体块)。空间指物体间的远近层次关系和包容关系。(如雕塑)具有实在的体积和空间,而绘画艺术,则是在平面上创造体块与空间的幻觉。如《长城》一画,就是在平面上通过平俯视构图,运用了大-小的透视缩形规律,以及近实远虚的视觉规律,加上光与色的烘托渲染,画面气势磅礴,使我们增强了民族的自豪感和加深了对祖国的热爱之情。

光与色:有光才有色,视觉世界是由光显示出来的。(参见p4大自然中的光与色)。色彩的正确表现能使画面获得真实感。不同倾向的色彩还能给予我们不同的视觉和心理感受,引起情绪的变化,如红色能给人以温暖、刺激的感受,蓝色则可能给人以冷、宁静的感受。

质地:指物体表面的解觉性或这种质地的视觉表现。(参看p4《雕塑》的质地)《雕塑》用粗扩的石质表现男性皮肤的质感。

6、总结和布置下一课时内容(约2分钟)

我们认识造型的基本要素,是为了更好地表现千变万化,千姿百态的视觉形象,认识艺术家取自自然之法则,创造出的瑰丽艺术世界。我们下节课将进入艺术家创造的艺术世界。第二课时

1、复习旧知,2、导入 新课

美术造型的基本要素来之于生活,但不是对生活的复制。“艺术源于生活。但不等不生活。”在从事美术创作时,艺术家会根据特定表现目的的需要,选择适合自己个性、兴趣的美术表现形式。

3、表现形式的分类

就表现形式的明显特点而言,分成具象造型和抽象造型两种基本形式。具象造型与抽象造型的区别在于:前者具有客观的现实形象,而后者中我们则不能看出任何客观的现实形象(结合教材范图讲解)。具象造型又可分为写实造型和变形造型。写实造型指忠实客观地描绘事物的真实面目的造型,或者说,在这种造型中,客观物象基本上按我们日常所见的样子被反映出来(见《苹果树》之

二、《小提琴手》)。变形造型则是运用夸张、省略等方法,表现人对事物的主观认识和情感。尽管变形造型反映的对象与我们日常所见不同,但我们仍可认出它们。变形造型即处于“似与不似之间”的艺术形式,层次十分丰富,既可偏于写实造型,又可偏于抽象造型(见《苹果树》之

三、《人物》)。

抽象造型在古代艺术中就已出现,而现代抽象则主要通过抽象的线、形、色的不同组合表达人的主观情感(见《即兴》、《岩石间的小镇》)

第三课中国古代美术作品欣赏(1课时)课型:单一课

教学方法:讲述、欣赏与思考

一、教学目的

1、通过对作品的介绍与欣赏,使学生初步了解宋代绘画艺术的空前盛况及作品的伟大成就。

2、对学生进行爱国主义教育,培养学生的民族自豪感和对中国传统绘画艺术的鉴赏能力。

二、教学重点

作品的艺术成就。

三、教学步骤

(一)引言与组织教学

中华民族能自立于世界民族之林,是因为她有着悠久的文明史。有着自己璀璨的民族文化。中国画----则是世界绘画艺术中的一颗绚丽的明珠。中国古代绘画艺术,多以中国画见长。下面请欣赏中国古代绘画史上全盛时期的作品,中国古代最大的风俗画---《清明上河图》。(板书课题,挂出画卷,约3分钟)

(二)作者简介

作者,张择端,字正道,东武(今山东诸城)人。生卒时间不详。约生活在十二世纪,为北宋未年著名的风俗画家。早期游学于京师。后习绘画,专攻界画,擅长舟船、车马、人物、街市、城郭等。宋徽宋熏和、宣和年间供职于翰林图画院侍诏(画院最高职称)。传世作品有《清明上河画》、《西湖争标画》、《武夷图卷》等。

三)《清明上河图》创作的历史背景

公元十世纪后期(960年),赵匡胤统一中国,建立了北宋皇朝,结束了五代十国的分裂局面。政治上实行了中央集权,经济上发展了农业、手工业和商业贸易。农业上注重了精耕细作、使用良种;陶瓷、纺织等手工业产品闻名于世,畅销国外;火药、指南针、活字印刷术三大发明等科学技术使对外贸易和城市经济空前繁荣,城市集镇不断出现,并产生了世界上最早的纸币,有了专营经商的“”(商店)、“”(剧场)、“”娱乐场”等。当时的京城汴梁(今开封市)则更显繁华。但北宋后期各代皇帝为求苟安(亦称偏安),向辽国接受屈辱的澶渊之盟。给西夏纳“岁币”。向金割地、纳银、贡绢,宋徽宗时期则更甚,虽联金灭了辽国,次年金兵大肆攻宋,徽宗为求苟安,主张议和投降,罢免了主战派将领。终在1127年,徽宗成了金兵的俘虏,北宋王朝被灭亡。张择端生活在北宋末期。皇帝宋徽宗赵佶虽昏庸腐朽,却是一个出色的画家。在位期间是宋代画院的极盛时期。招录了不少有才华的画师入画院供职。宋徽宗很注重写生,他诏令翰林画院的画师都要写生。张择端根据京城汴梁繁华的集市贸易与街景(一是说清明时节,但清明时节的景象描写不多,另一说法是从清明坊到虹桥一汴河上河的街景。后者则更有说服力。人物中有赤膊的、戴斗笠的、轿上插树技遮荫的、摊位上的遮阳伞、遮荫篷等可以作证)写生而创作了蜚声世界的《清明上河图》。

(四)欣赏《清明上河图》

1、主题思想:通过对北宋都城汴梁繁荣的经济生活与民俗风物的描绘,歌颂了创造历史和社会财富的下层劳动人民的智慧和力量。

2、作品介绍:

《清明上河图》全长5278厘米,高248厘米,绢本白描淡色长卷风俗画,现藏

故宫博物院。

全画气势磅礴,规模宏大,场面复杂,结构严谨,为全景式构图。总体上看,可分为田野、汴河、街市三个地方。情节连绵不断,高潮迭起。图中街市,屋宇栉比,货摊沿街,人物众多,神态各异,人喧马嚣,车轿穿梭。正是这番形形色色,熙熙攘攘,百货俱陈,百态俱备的情景,呈现了北宋末期工商业发达的社会面貌。从商业、交通、澶运建筑等几个具典型意义的角度,集中概括地再现了十二世纪我国都市生活状况。反映了一个历史时期的政治、经济、文化及民俗。构成了一件内容丰富的完整的艺术品,成为研究北宋社会的综合性形象史料。

画卷共画不同阶层的人物550佘人(教材上虹桥部分就有130佘人),不同种类和形态的牲畜五、六十匹,不同类型的车轿二十佘辆(顶),房屋三十佘幢,大小船只三十佘艘。无论状物写人,还是写动描静,对每个细节都求一丝不苟于浩大工程之中。画家具有非的观察力、记忆力和写生功底。用默写的手法,把游汴河两岸街景时遇到的典型事件描绘出来。如全画的中心---虹桥部分,表现出桥上喧哗、桥下沸腾的热烈场面。桥头货摊相连,左侧桥栏边的人物在观景赏流,桥右侧人物扶栏观船逆流过桥。桥中达官贵人的轿马相遇,双方的豪奴都在呼喝让道,可见骑者勒马,;轿夫阻步。表现出统治阶级的骄横。并使桥上出现拥挤阻塞现象。桥下水流湍急。一大船头已过桥面,船身尚在桥下,船橹末端尚露出在桥右侧一方。另一货船正要过桥,船身已横,船头已被激流冲下。船夫们手忙脚乱,有的奋力撑船,有的挥手呼号,不进则退,船身已横,船夫们手手忙脚乱。这种人声鼎沸、激浪奔腾的热烈场面,在画家笔下表现得淋漓尽致。

作为全景式构图的古代现实主义艺术大作,从远郊河野,一直至城郭街市,不但能鸟瞰繁华的街市,还可极目郊野;楼宇舟桥树木横列于近处,河道原野延伸至天边。景物的大、小、远、近、疏、密、动、静、简、繁,通过画家传神之笔,都得到准确、慎密、生动、妥贴的有机表现。使画卷具有长而不冗、繁而不乱、紧凑严密、起伏有节的鲜明的艺术节奏感。充满“方寸之内,体百里之回“的宏伟气慨。表现了画家在运思立意过程中,概括生活和选取题材方面的高度艺术才华。以及在布局上不受固定视点的限制,充分运用“散点透视”的娴熟技巧。

(五)《清明上河图》的艺术成就。

1,作品体现了我国民族绘画的优秀传统和中国古代画家“目识心记”深厚的默写功能。

2,线描技法已臻和谐完美的高水平。突出地体现了我国古代绘画以线造型的技法特色。

3,是人物刻划、景物描绘达到形神毕肖、生动准确的神品之作。4,是中国画传统的“散点透视”的布局的典型。

5,是界画、山水、人物融为一体的以工带写,以写润工的典范。6,是显示画家高度的组织技巧和概括现实生活能力的范例。7,是研究宋代社会的综合形象史料。

(六)结论 《清明上河图》是闻名世界的绢本白描淡色长卷风俗画。是我国古代写实主义的杰作(早欧洲七百余年),是中华民族文化艺术的珍宝,是中国美术史上一颗灿烂的明珠。

走进邯郸,探寻历史与文化》综合实践课教

一、活动目标: 了解邯郸的历史与现在的发展,对邯郸独特的文化有较全面的认识。

培养学生根据主题收集、整理、筛选资料的能力,引导学生掌握分析运用所得资料的基本方法。培养学生的合作意识,引导学生学会自主、合作学习。

培养学生在综合活动中的创新意识和创造能力。

通过活动增强学生对家乡的热爱之情,增进对家乡历史与文化知识的探究心理。

二、课前准备

学生分成五个小组“发展与变化”“成语与典故”“名牌与特产”“旅游景区”“历史名将”分别上网或以其他方式收集相关资料(同时请学生注明获取相关资料的渠道:是从教材中获取的,还是从教材外获取的,如查了什么网,翻阅了什么书刊、什么词典,或是从什么人讲的什么故事中了解到的)。

请同学们根据自己选择的重点,筛选、整理、加工所收集的资料,形成文稿或者制作手抄报、讲故事并配合表演、作文、广告词、图片及介绍、成语接龙和快板等多种形式准备参加讨论在小组或全班交流。

三、活动过程

(一)主题的产生:

我们邯郸是闻名遐迩的成语之都,是多元文化的历史古城,有着了丰富的历史文化底蕴。然而对于我们当代的学生而言,身在美丽的古都,被人杰地灵的水土养育着却对自己的家乡知之甚少那将是可悲的。通过学习校本课程《邯郸历史与文化》使学生在思想和感情上引起共鸣,激发学生想要进一步探究家乡的兴趣。作为邯郸人,要寻找家乡文化方面的根,知晓家乡的辉煌历史。对学生进行知家乡、爱家乡的情感熏陶是家乡教育者的责任与义务。

综上所述,“走进邯郸,探寻历史与文化”这一主题便确定了。知识目标:了解邯郸的历史与文化(发展与变化、成语与典故、名牌与特产、旅游景区、历史名将)。能力目标(1)培养学生根据主题收集、整理、筛选资料的能力,引导学生掌握分析运用所得资料的基本方法。

(2)培养学生的合作意识,引导学生学会自主、合作学习。

(3)培养学生在综合活动中的创造能力。3 情感目标:激发学生爱家乡的热情。

同学们课前通过网络,或者其它渠道收集到了许许多多有关邯郸的资料,并且已根据自己确定的主题进行整理、筛选,加工形成了文稿及多种形式。现在,就请各组同学相互交流,共同分享彼此的收获,丰富我们的思想。

(二)学生先在小组内交流自己收集到的资料,然后形成小组集体的看法

1、合作与交流:然后各组推荐学生介绍情况(记住,别忘了提供资料的来源,也可展示图片等资料,其他同学可以补充)。

2、成果呈现:学生进行图片展览及介绍、故事及表演、手抄报展览、广告卡片、邯郸成语谐音接龙、快板等。

(三)总结反思

1看来同学们的感触颇多,这次的综合性学习活动已经接近尾声了,通过这次活动,同学们有哪些收获呢?我们预定的目标达到了吗? 这次活动中你最欣赏谁的表现?为什么? 你对自己在本次活动的表现满意吗,有何评价,能说出来大家听听吗?

家乡是每一个家乡人一生的挚爱与牵挂,这节课,我们从各个方面探寻家乡的历史与文化,感受古城的风采,同时品尝到了自主学习的甜蜜,体会到网络资源的巨大能量和合作学习的优越性。使我们收获的不仅仅是知识还有一种学习的能力。

再来一篇
上一篇:最新初识画图说课稿(四篇) 下一篇:2023年毕业留言唯美句子50字 毕
热点阅读