在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
5以内加法的教学反思篇一
一、导入凸显分与合的思想。
加法的含义来自于分与合的思想。在教学开始时,以几组变式的分与合作为基础,铺垫让学生初步感受今天我们要用分与合来解决新问题。
二、从算理中教学。
在例题教学时,我通过图意变化,引导学生看变化的过程,说清图的意思。(校园里3个小朋友在浇花,又来了2个)。同时以提问的方式出现第三句话:一共有几个小朋友?给学生初步建立条件与问题的概念,了解看图是要解决问题。大部分学生已经能够看图列出加法算式:3+2=5。这部分是学生的已有经验,我把重点放在了算式含义的讲解,计算教学重在算理。我采用了接受式学习方式,“+”学生已经认识,而是通过口头语言和肢体语言让学生感受“+”的意义是合起来,将形象上的“合”和意义上的“合”结合起来。算式“3+2=5”中“3”、“2”、“5”的意义解释,学生能够结合具体情境来解释,说明学生能够理解数的意义了,学生能够通过分与合的经验说出算式的意义,让学生经历形象——数——符号——语言——初步将意义整合,最后将“3+2=5”意义精简为“3和2合起来是5”。
三、用今天学习的知识解决实际问题
不同层次的练习符合能力的需要,重在拓展学生的能力。
摆一摆、说一说,将摆说结合,将动作和语言相连接。
看算式,摆一摆则是对数形的结合。
说一说、填一填。让学生观察情境图,学生能够自己看图说意思、提问题、列算式。通过情境的变化,发现三道 算式中的规律,先是有经验的积累算式,再由现象观察算式,到分析算式、比较归纳。
算一算、填一填。直接写出得数,比较“2+1=3”和“1+2=3”之间的规律:加号前后交换位置的得数不变,再通过找到的规律让学生自己找算式,充分给学生空间拓展能力。
送信连一连。将连线题和有序的排一排结合在一起,将得数是5的算式全部找到。这部分环节让学生自己动手,上黑板排序、说一说,体现了学生是课堂的主体这一数学思想。
看一看,列算式。出现整幅综合图,让学生自己从图中找信息,列出相应的加法算式。学生能够充分的说图意,列出不同形式的加法算式,说明学生不但会计算,还能通过加法来解决实际问题。
四、总结突出算理。
本节课的总结关键就突出“+”的含义——合起来。在课的最后再回到导入的铺垫,用分与合的知识解决加法计算。
这节课还存在许多不足的地方。我可以通过语音语调来吸引学生的注意,而不是一味高调;在送信环节,学生一开始出现从大到小、从小到大的顺序排列,在这里可以放手让学生自己再去排一排,学生能够根据分与合的联系出现两组算式,让学生认识事物的对比过程,自主的找到算式之间的联系,而不是教师自主将这一环节延后出现;在教学中还要充分注重教是为学服务的。
5以内加法的教学反思篇二
在数学中,加法是一种常用的计算方法,也是基础的基础,由于本课是学生第一次正式接触加法,因此学好这一课,对以后的数学学习至关重要。虽然,在学生以往的生活经历中,一些日常问题的解决使得他们对加法产生了或多或少的朦胧印象,但是,让学生真正地了解加法并运用加法解决问题,这还是第一次。因此,本节课教学的重难点是:让学生真正理解加法的含义并能运用加法去解决实际问题,用数的组成知识去做加法。
一、导入凸显分与合的思想。
加法的含义来自于分与合的思想。在教学开始时,以几组变式的分与合作为基础,铺垫让学生初步感受今天我们要用分与合来解决新问题。
二、从算理中教学。
在例题教学时,我通过图意变化,引导学生看变化的过程,说清图的意思。(校园里3个小朋友在浇花,又来了2个)。同时以提问的方式出现第三句话:一共有几个小朋友?给学生初步建立条件与问题的概念,了解看图是要解决问题。大部分学生已经能够看图列出加法算式:3+2=5。这部分是学生的已有经验,我把重点放在了算式含义的讲解,计算教学重在算理。我采用了接受式学习方式,“+”学生已经认识,而是通过口头语言和肢体语言让学生感受“+”的意义是合起来,将形象上的“合”和意义上的“合”结合起来。算式“3+2=5”中“3”、“2”、“5”的意义解释,学生能够结合具体情境来解释,说明学生能够理解数的意义了,学生能够通过分与合的经验说出算式的意义,让学生经历形象——数——符号——语言——初步将意义整合,最后将“3+2=5”意义精简为“3和2合起来是5”。
三、用今天学习的知识解决实际问题
不同层次的练习符合能力的需要,重在拓展学生的能力。
摆一摆、说一说,将摆说结合,将动作和语言相连接。
看算式,摆一摆则是对数形的结合。
说一说、填一填。让学生观察情境图,学生能够自己看图说意思、提问题、列算式。通过情境的变化,发现三道 算式中的规律,先是有经验的积累算式,再由现象观察算式,到分析算式、比较归纳。
算一算、填一填。直接写出得数,比较“2+1=3”和“1+2=3”之间的规律:加号前后交换位置的得数不变,再通过找到的规律让学生自己找算式,充分给学生空间拓展能力。
送信连一连。将连线题和有序的排一排结合在一起,将得数是5的算式全部找到。这部分环节让学生自己动手,上黑板排序、说一说,体现了学生是课堂的主体这一数学思想。
看一看,列算式。出现整幅综合图,让学生自己从图中找信息,列出相应的加法算式。学生能够充分的说图意,列出不同形式的加法算式,说明学生不但会计算,还能通过加法来解决实际问题。
四、总结突出算理。
本节课的总结关键就突出“+”的含义——合起来。在课的最后再回到导入的铺垫,用分与合的知识解决加法计算。
这节课还存在许多不足的地方。我可以通过语音语调来吸引学生的注意,而不是一味高调;在送信环节,学生一开始出现从大到小、从小到大的顺序排列,在这里可以放手让学生自己再去排一排,学生能够根据分与合的联系出现两组算式,让学生认识事物的对比过程,自主的找到算式之间的联系,而不是教师自主将这一环节延后出现;在教学中还要充分注重教是为学服务的。
5以内加法的教学反思篇三
教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。新一轮课程改革很重要的一个方面是改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
新课程提倡学生初步学会从数学的角度提出问题、理解问题,并能综合应用所学的知识和技能解决问题,发展应用意识。随着社会主义市场经济体制的逐步形成,股票、利息、保险、有奖储蓄、分期付款等经济方面的数学问题,已日渐成为人们的常识,因此,数学教学不能视而不见,不管实际应用,这样恐怕就太不合时宜了。
学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,我针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。如在"代数式"这节课中,由上节课的一个习题引入,带领学生一起探究得出一个规律5n+2,由此引出代数式的概念。在举例时,老师指出,"其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?"学生们开始活跃起来,一位学生举起了手,"一本书p元,6p可以表示6本书价值多少钱",受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。
合作探究会给学生带来成功的愉悦。例:"统计图的选择"教学设计和教学中,要求学生以4人小组为单位,调查、了解生活中各行各业、各学科中应用的各种统计图,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。
在学生上网查询,精心设计、指导下,成功地进行了"我是小小设计师"的课堂活动:这节课是以七年级数学上册第26页3题的作业为课题内容设计的一节课,以圆、多边形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。
在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。
5以内加法的教学反思篇四
在教学中,我们常会碰到这样让人哭笑不得的作业:“一棵大树高10厘米。”“小明的身高120米。”……学生之所以出现这样的错误,主要原因在于没有对长度单位的实际大小形成鲜明的表象。长度单位这个概念,二年级的学生第一次接触,对于什么东西是厘米、米只有一个模糊的概念,学习以前可能是从未听说过,这样学习起来学生确实有点困难。这样的例子从另一个侧面提醒我们,对于这样的空间想象能力方面,学生还是比较薄弱,教学时应当重视计量单位观念的形成,并将这方面的要求落到实处,在教学长度单位厘米和米时,应按照学生的认知特点,还原数学生动活泼的建构过程,让学生用自己的活动建构对新知的理解,形成自己的体验。我觉得做到以下几点比较重要。
一、让学生在活动中体验——建立表象
1、体验1厘米的实际长度,可以通过下面的活动展开。
量一量。让学生选用不同的物品作标准测量课桌的长,进而产生疑问:“为什么量同一物体,而结果却不同?”使学生体验线段的长度是可以度量的,但需要相同的测量工具,认识到统一长度单位的必要性。看一看。通过观察直尺,直观感知1厘米的长度。让学生从直尺上找出1厘米,并且知道从刻度0到刻度1之间就是1厘米。再让学生找一找,还有哪两个数之间的长度也是1厘米,加强对1厘米的感受。画一画。让学生在练习纸上画出1厘米的线段,再次直观感知1厘米。比一比。请每个学生拿一个棱长是1厘米的小正方体,放在左手大拇指和食指之间,然后抽掉小正方体,左手手指不要动,看一看1厘米的长度,再比出1厘米,最后用直尺量一量或把小正方体塞进去验证一下,比的长度是不是大约1厘米。估一估。给学生提供长1厘米左右的学具,让学生利用已有的1厘米表象进行估测,再让学生用尺子量一量。找一找。从生活中找出长度大约是1厘米的物体。记一记。闭上眼睛想一想,1厘米有多长。
2、体验1米到底有多长,可以安排下面的活动。
看一看。直观感受1米的长度。量一量。量出哪些物体的长度大约是1米。比一比。两手把米尺拉直,手的位置不动,把米尺放掉,看看1米的长度。再把眼睛闭起来想想1米的长度,最后睁开眼睛,用手再次比画出1米的长度。排一排。排1米长的队伍,每两人间保持一脚的距离,看看大约排几个人。走一走。自然、均匀地走1米长的一段路,数数大约要走几步。
这样教学,把教材上“静止状态”的学习材料转化为“动态生成”的活动情境,有助于增强学生的学习兴趣,形成对新知的体验,促进对学习内容的理解。
二、在估测中认识——形成概念
1厘米、1米的概念比较抽象,学生容易遗忘。为了使学生更好地建立概念,可让学生尝试利用自己肢体上的某些大约长是1厘米、1米的部位或学习用品、生活用品中的1厘米、1米来帮助记忆。如学生大拇指的宽大约是1厘米;小指第二个关节的长大约是1厘米;二年级学生脚到胸口的距离大约是1米,记住这些“身体尺”,对建立1厘米、1米的长度概念或进行估测都大有益处。
估测是对事物的整体把握,是对事物数量的直觉判断。估测与数的认识、量的计量相配合,能加深学生对数的理解,增强灵活处理日常数量关系的能力。在教学中,我们应鼓励学生大胆估测,比较各自的估测结果,交流各自的估测策略,展示每个学生的独特想法,相互借鉴,不断提高学生的估测能力。
估测不是信口胡说。因此,估测一条线段长几厘米,一般不要让学生随便报出几厘米,而是要求他们想一想用什么工具、方法可以帮助估测。比如,引导学生通过用小手指尖到手腕的距离大约是10厘米来和这一条线段比较,从而得出更加合理的结果。教学中,教师除了注意挖掘学生身边的生活资源,如身体上的其他部位或周围的其他物品进行估计、测量,增加估测和实际测量的机会外,还要充分运用教材所提供的练习题。要把估测的结果与实际测量的结果进行比较,找出估测与实际测量的误差,培养学生初步的估测意识和估测能力。
三、在应用中拓展——理解概念
学生对长度单位的理解还应与实际测量紧密结合起来。测量是教学难点。如果教师直接向学生讲解测量的方法,学生的学习可能会轻松顺利,但考虑到一些学生已经会测量物体的长度,因此可尝试让学生自己动手测量,然后交流、讨论,总结测量的方法。用直尺量物体的长度,对学生来说容易出现的错误有:从尺的一端开始量,而没有用直尺上的0刻度线与所量物体的一端(起点)对齐;不会灵活使用直尺,不知道直尺上任何一个刻度都可以作为测量物体长度的起点。另外,在量的过程中,部分学生对直尺的控制不够自如。教师应发挥主导作用,充分讲解,悉心指导,让学生切实掌握测量方法。把尺的边与物体的边靠近着平行摆放,而尺的0刻度线要对齐物体边的一端。学生在进行操作性学习的过程中,多种感官参与学习活动,既可以丰富感性认识,又能加深对数学概念的理解。
小学生认识事物带有很大的形象性,只要提供较多的具体事例,使他们在思维过程中积累起丰富的感性材料,就可以帮助他们逐步学会抽象出数学概念的方法。基于这种状况,在数学教学中培养儿童观察力显得尤为重要。在培养儿童观察力的过程中,要引导学生不仅观察事物的表面现象,而且要透过现象观察事物的本质。要指导他们逐渐懂得看问题应该从什么角度看。同时,要教会他们特别注意进行分析、比较。
5以内加法的教学反思篇五
我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2
解后笔者便引导学生进行反思小结.
(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。
5以内加法的教学反思篇六
数学课程标准(实验稿)改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:
老方法:
x + 4 = 20
x = 20-4
依据运算之间的关系:一个加数等于和减另一个加数。
新方法:
x + 4 = 20
x + 4-4=20-4
依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。
改革的原因(摘自教学参考书):
新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。
从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。
那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。
1.无法解如a-x=b和a÷x=b此类的方程
新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。
我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更 会无法避免地直接和方程思想发生矛盾。
如“3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?”合理的做法应是“设桃子每千克x元”,从顺向思考,列出方程为“2.5×3-5x=0.5”。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成“5x+0.5=2.5×3”之类的方程。又如:课本第62页中的“爸爸比小明大28岁,小明х岁,爸爸40岁。”很多学生根据“爸爸比小明大28岁”列出40-х=28,可是无法求解,所以又转成х+28=40。
很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成“5x+0.5=2.5×3”“ х+28=40”那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?( 励志天下 )
我们不难看出,根据现实情境列方程解决问题,x当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。
2.解方程的书写过程太繁琐
教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。
因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。
从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?
5以内加法的教学反思篇七
《用比例知识解决问题》是本单元最后一部分知识,是学习了正比例和反比例关系后的实践应用。本节课,在教学中教师力求通过知识的迁移,结合学生的生活经验,让学生借助函数关系间变量的对应规律,正确判断两种相关联的量之间的依存关系,根据它们的正、反比例关系,列出相应的比例式,解决问题。
在实际教学中,我把握本节课的重点,采用开放式的教学方法,将课堂的主动权放手学生,让学生在自己探索、独立尝试、同桌交流、质疑辨析、对比归纳、概括小结、拓展延伸中轻松,高效地完成了教学任务,反思本节课的成功之处,我有以下三点感悟:
一、课堂永远是无法完全预设的
本节课,课前的复习按照预期的设计顺利完成。当我出示例5后,学生默读题目,独立分析后,我鼓励学生自主探索,独立尝试解决问题,不到1分钟,同学们的小手就此起彼伏地浮现在桌面上,个个跃跃欲试,当2名学生将自己的思索展现在黑板上时,我不禁一惊,这两位学生竟然用了不同的解题方法,除了以前学过的归一、归总法,又出现了今天的新课方法,按我预先设计的方案,学生用以前的方法解决后,我将会出示一个自学提示,引导学生按步骤,按思路来用比例解决,学生会顺理成章地理解题意,学会用比例解决。没想到学生自己就能列出正确的比例,我顺势请板演的同学到黑板前讲一讲自己的思考,真没想到,这个孩子讲得头头是道,把我的“活”儿抢了。同学们听了她的讲解,顿时茅塞大开,把我连续出示的两个基本练习做得漂漂亮亮。
课后我反思这个环节,异常感慨,本来以为丝丝相扣的自学提示,会让学生在老师无形的指挥下,理解正比例应用题的思考方法,没想到一个不到1分钟的独立尝试,就让学生破解了我的预设,而后我的顺势相邀——请学生讲解,却让课程呈现了更为灿烂的一幕。课堂永远是无法预设的,当出现与预设不相符的状况时,教师一定要会调控,得当的调节能让课堂更加精彩。
二、错误点就是生成点
在进行变式练习时,同学们争先恐后地上讲台展示,马小贺同学出现的错误给课堂带来了新的生成,我们习惯应用“总价÷数量=单价”,当单价一定时,可以列成正比例式,而马小贺同学却将等式的左边写成“数量÷总价”,班内同学议论纷纷,我借势引导学生,抓住正比例关系的对应量对等的要点,使一个比例式拓展成了两个,让学生明白了,两个变量之间的对应规律和依存关系。课堂中无意的错误点,生成了新的知识点,让学广开世面,更深层次地理解最简单的函数知识。
三、真实的课堂,回生阻道
我喜欢真实的课堂,这节课,课前我一点儿都没有提示前面的知识。课堂上,当提问正比例和反比例关系时,很多学生都有些生疏,对量与量之间的变化规律有些陌生,经过老师提示后,学生们才回想起前面的概念,这部分所用的时间比预先多用了1分钟左右,虽然是大约1分钟的时间,却给我敲响了警钟,知识一定要常温常故,尽量避免学生的回生,更要防止知识的断层。
反思这节课,给我带来了很多启示,一位好的数学老师必须具备全面、科学调控课堂的能力,及时抓住课堂的生成点,适时点拨,拓展延伸。与此同时,教师还不能忽视知识的前后联系,不能让知识搁浅,做好做实日常工作,让数学思想、数学方法、数学知识扎根学生心中。
学基础知识和基本技能的落实还不够扎实。这是本堂课呈现的一对矛盾,恐怕也带有一定的普遍性。
5以内加法的教学反思篇八
本节课上后个人感觉还有很多细节问题没有处理好,虽然同事们都给予了肯定,但我个人还是不太满意的。下面作出自我反思:
1、本节课拖堂5分钟,主要原因有二:
首先可能是教学内容较多,在新课中就有许多练习,整体上时间已经比较紧凑了。
第二,在两个环节上个人认为还处理不当,导致时间浪费过多。一是学生收集的信息中有一个关于8和9的小故事,这在试教时是没有的,因为两个班学生收集的信息不同。我觉得这个题材不错,于是在课堂上给学生读了一下,也浪费了1分钟时间,虽然感觉这能吸引学生的兴趣,但在时间如此紧凑的前提下,也只能放在课后让学生去了解。另外,在处理8和9的序数意义时,我怕读题太费时间,但结果学生由于识字量有限,对这一题解决得并不理想,也许读一读题目,效果会好很多,毕竟这是一年级的学生。由于我对低段教学经验不足,总是忽略这个问题,这是今后应十分重视的问题。
2、8和9的书写环节应该调整在揭题之后。
这是吴老师给我提的第一个建议,我发现其实这个问题很明显,但自己之前却没有考虑到,而只是一味地照本宣科,看到课本上的顺序是这么安排的,就这么死板地去教,可见自己处理教材上还应考虑得更周全些。
吴老师的建议让我觉得豁然开朗,比如在理解8、9的基数和序数意义时,我是通过数花朵一题来完成的,但由于没有读题,学生反馈情况不太理想,吴老师建议我让学生现场站一站,如请从左数第8个学生站起来,请从右数8个学生站起来。这样的方法既直观又生动,可以有效帮助学生理解“几和第几”,从而突破难点。遗憾的是我只能将吴老师的建议带回我平时的课堂深化下去,感谢的是有这么多专家及同事给出中肯的建议,让我学到更多!包括黄校长,亲临我的试教,悉心指导;还有吴老师的谆谆指导,总是让我受益匪浅,而面对这所有的一切,我只有更快地改正自己的不足!
个人觉得自己此次准备仓促,也暴露出了自己在教学上的许多不足之处,比如设计上,还没有特别创意的设计。又如以往对于教研课,我都至少试教2次,而本次只教了1次,所以也足以看出自己的功底还不够,以后应朝着“精教”的方向去努力。另外,本节课我都采用保护环境这个主题,后面的练习设计也都在“花”上下功夫,但给人的感觉却有些视觉疲劳,可见我的情境没有连贯好。借着此次机会给自己提出一个忠告:不要忽视每一节课,不要因为这是一节普通的教研课而不够重视,我需要的是初上讲台时的那种执着和不懈的努力。不要给自己找任何的借口,正视不足,不断改之,方为上策!
5以内加法的教学反思篇九
随着时光的流逝,我和八年级学生又度过了半个学期的光阴。在这段日子里我有过喜悦,也有过困惑;有收获,也有失败。期中考试也结束了,我所带的两个班,学生考得不太理想。作为三年级数学老师的我也在不断反思,为什么学生的成绩考得不高。面对那一张张稚嫩的小脸我觉得更多反醒的应该是自己。结合本次期中考试,我做以下几点分析:
一、学生方面
1、学生在读题时不够认真仔细,甚至有漏题现象,;据监考老师反映,学生拿到试卷后,不是东张西望,就是做小动作,也不认真读题审题,做完后也不认真检查。所以说学生独立做题的能力有待加强。
2、学生们理解能力不强;特别表现在综合应用上。做题是一知半解。不够全面。
3、学生对成绩对知识的掌握缺乏必要的责任感,很多同学无所谓,当时讲能明白,过了几天又忘了。
4、相当一部分的同学基础知识不扎实,不过关。这次考试中有几个学生甚至连加、减、乘、除四则运算都不过关。就因为对所学知识掌握不扎实、不牢固,导致做起题来丢三落四的,错误百出。还有部分学生中存在着思维不够灵活,在运用所学知识方面不够灵活,题目稍微“转了个弯”,就解答不出来;另外,由于做题不够小心谨慎,也容易失分。而失分的原因多在于做题马虎,不细心,把数字看错或漏写。这里面也包括一些优生。
原因分析:
1、对于农村学生来说,有的父母长期在外面打工,孩子的生活和学习无法得到父母的照顾和指导,成了留守儿童。这些学生在家学习上无人指导和监督,就变得自由散慢,学习无自主性。
2、部分学生上课不认真听讲,平时作业也不认真,根本没有把心思放在学习上。
3、学生的成绩提不高,还在于很多学生对于数学的学习兴趣不够,不能自觉、自主地学习。遇到不懂的问题,也不闻不问,得过且过。甚至有些学生,根本就不知道自己哪些知识不懂,整天迷迷糊糊的。学生的学习兴趣非常重要,很多学生对于学习没兴趣,上课也不能专心听讲,课后又不能自主学习,成绩就无法提高了。再者,根据家访所了解到的情况,很多学生在家里的学习不自觉,相当一部分的学生回到家里只是完成当天的作业而已,谈不上预习、复习。
二、教师方面
当然,学生考的成绩不理想,作为任课教师的我,也有不可推卸的责任。
1、挖掘教材不够深,知识的渗透度不高,学生对知识掌握的不够牢固;教学目标不明确,课堂随意性较大;教学重点不突出,抓不住规律性的东西,知识交代不到位。
2、教学中设计的练习题的类型太少;练习设计不科学,没有层次性,练习效率低下。
3、对学生的学习和作业习惯,要求不够严格。
4、对后进生的耐心辅导不够。
5、对学生每节课所学知识点巩固的不够及时。
三、采取的措施
面对上述存在的问题,为了能更好地完成本学期的教学任务,在以后的教学中,将采取以下措施:
1、及时调整教学方法,做到一步一个脚印的教学。
2、针对学困生,让他们知道自己为什么差,差在什么地方,同时,找出他们身上的闪光点,让他们鼓起勇气,奋勇争先,力争赶上中等学生;优秀生,让他们平时不仅要管好自己,使自己天天向上,还要经常帮助学困生。开展“一帮一”教学的活动,让每一个成绩优秀的学生都与成绩较差的学生交朋友,互为小老师,互帮互助,共同进步和提高。
3、营造宽松民主的学习环境,让所有学生产生学习数学的积极性,夯实基础,日日进步,相信苦尽甘来的道理。
4、加强课堂常规管理,提高课堂效率。三年级是小学阶段重要的转折期,学习习惯的养成至关重要。所以要重点抓学生的习惯养成,比如书写习惯、听课习惯、及时订正错题习惯、倾听习惯、思考习惯等等。这些习惯的养成是一个循序渐进的过程,需要教师耐心的指正与督促,并且要至始至终的坚持。包括学生的坐姿、倾听、举手发言、尊重别人等方面。使整个班级富有朝气和向上的学习氛围;当教师和同学在发言时要学会倾听,自己不但要会思考,更要倾听别人的意见和见解,只有学会了倾听,才会使自己更会思考,思考的更加完整;数学课要学会思考,只有学会了思考,才能学数学,有了自己的思考后还要会发表,向别人阐述自己的想法;尊重别人,当别人在发言的时候,不允许插嘴打断别人的思路,即使别人说错了或者自己有更好的方法,也要在别人讲完后方可发表,这是对别人的尊重。只有把课堂常规管理抓好了,才能有效地提高我们的课堂效率。
5、关注学生良好的考试习惯的养成。首先让学生放松紧张的心理,在试卷发下来以后,先整体浏览一下试卷,看看题型和题量,做到心中有数。考试时做到专注、投入。还应教给学生检验的方法,对于不同的题型有不同的检验方法,这些在平时就应教给学生。每次考完试以后,让学生做试卷分析和辨析。
6、家校同步,孩子进步。加强家庭教育与学校教育的联系,适当教给家长一些正确的指导孩子学习的方法。经常与家长保持联系,取得家长的配合。
以上是对这次期中考试的反思。在下半学期里,我将以提高学生的学习兴趣为主,培养学生的良好学习习惯。在今后的教学过程(本文来自优秀教育资源网斐.斐.课.件.园)中,对学生及时跟踪辅导,因材施教。同时,虚心向其他教师请教,学习经验,争取下半学期把成绩提高上去。
5以内加法的教学反思篇十
九年级毕业班总复习,教学时间紧,任务重,要求高,学生对学过的知识早已忘记。如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。今年这一学期比往年较长,计划安排两个月进行第一轮复习。进行第一轮复习之前,我有以下几点认识:
1.第一轮复习的目的是要“过三关”:(1)过记忆关。必须做到记,记准所有的重要知识、公式、定理等,没有准确无误的记忆,就不可能有好的结果。(2)过基本方法关。如:待定系数法求函数解析式;用勾股定理和三角函数来解直角三角形。(3)过基本技能关。如:给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说明具备了解这个题的技能。在这一阶段的教学把书中的内容进行归纳整理、组合,使之形成知识结构,可将代数部分分为:实数、代数式、方程、不等式、函数、概率、统计初步等;将几何部分分为:几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。复习完每个单元都要做卷检测,重视补缺工作。第一轮复习的基本宗旨:知识系统化(知识树),练习专题化。
2.第一轮复习应该注意的几个问题,必须扎扎实实地夯实基础。
(1)根据往年中考有些基础题是课本上的原题型或改编变式题,必须深钻教材,绝不能脱离课本。
(2)不搞题海战术,精讲精练,举一反三、触类旁通。“大量练习”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中要害的强化练习。
(3)每天批改检查学生完成的作业,及时反馈。对于作业、练习、测验中的问题,采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反馈、矫正和强化,有利于大面积提高教学质量。
(4)注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学困生体验成功。
5以内加法的教学反思篇十一
这是一节抽象的概念课--“倍的认识”,整个过程教师花时不多,但学生学得充实快乐。也许正是遵循了学生的认知规律,符合了学生的心理特征。
一、给学生提供丰富的学习材料
《数学课程标准》指出,课堂教学中学习材料的提供途径应该是多样的,可以是教师提供,也可以是学生提供,学习材料应该是丰富的,便于学生进行探索与研究。教师首先要理解教材,深入挖掘教材的内在意义。教师应本着“源于教材高于教材”的理念,以教材所提供的为蓝本进行合理的设计改进。因此,我以美丽的大森林为背景,设计了更生动更符合二年级孩子心理特征的情境。在碧绿碧绿的草地上先出示两种动物(2只猴子,6只小鸭子),在原有知识(比多,比少)的基础上,引入一个新的概念—“倍”的认识。在学生体验的过程中,教师顺其自然,出示了4只青蛙,8条小鱼,12只小鸟……,引导学生在情景中探索,在操作中感知,可以说学生对“倍”的理解已经比较透彻了。
二、关注师生间的平等对话
教师不仅是组织者和引导者,而且是学生年长的伙伴和真诚的朋友。好的数学老师应该善于营造一种生动的数学情景,一种平等的对话情景。课堂教学就是在这样的情景中所进行的“对话”,教师和学生不仅仅通过语言进行讨论或交流,更主要的是进行平等的心灵沟通。在对话的过程中,学生作为一个个具有独立完整的精神个体展现在教师面前。这种状态下的课堂教学过程,对师生双方来说都是一种“共享”。
本节课的教师时而充当“听众”,时而充当“长者”,引导学生去倾听、交流、探索。用“谁听明白了,请你用学具摆一摆,把我的意思讲给大家听”“不要说出答案,用学具摆一摆,悄悄把想法告诉给我。”给学生设置障碍,加深对知识的理解,给学生最有实效的评价…同时,教师时刻关注学生的思维动向,在预设中生成,在生成中变化。新课标要求课堂给学生适度的开放,但也给教师提出了更多的要求,以学生为教学活动的主体,发挥教师的主动作用,尊重个体的价值取向,遵循教学规律,这些将永远是课堂教学进入用心境界的先决条件。
当然,本课还存在很多的不足,如教师的课堂调控能力还应加强,需要自身不断的努力提高。新的课程改革给教师一个全新的舞台,也对我们提出了更高的要求。不断的探索实践,我们才能走得更远